

The Internet's Not a Big Truck: Toward Quantifying Network Neutrality

Robert Beverly, Steven Bauer, Arthur Berger {rbeverly,bauer,awberger}@csail.mit.edu

PAM 2007

Network Neutrality:

- Actively debated/discussed by politicians, regulators and researchers
- → But...many definitions!
- And...no measurements!
- We focus on one important, well-defined dimension: "port blocking"

Internet Port Blocking

Internet Port Blocking

- This work: Active/Passive hybrid measurement approach
- Main contribution:
 - Novel leverage of P2P overlay for largescale Internet measurements
- Promising results:
 - First measurements of "Network Neutrality"

Port Blocking for Policy

 Port blocking: policy control that relies on coupling between applications and port

IANA Well-known port assignments

- •We focus on TCP port blocking, examples:
 - Comcast blocks outgoing port 25 (SMTP, prevent botnet spamming)
 - Michigan blocks incoming ports 135, 137, 139 (Microsoft file sharing)
 - ↗ UCI blocks port 1433 (MS-SQL)

4/11/2007

Blocking and Neutrality

ISPs may block for altruistic reasons: ISPs QL worm
NetBIOS, etc.

ISPs may block competing services: Force use of SMTP gateway
Madison River Ruling [United States FCC]

We seek to *inform the debate*

We <u>do not</u> argue legitimacy or justifiability

Measuring Port Blocking

Design Criteria:

- → Generality: Test arbitrary ports
- Quantity: Large number of tests
- Minimal participation: Assume no active cooperation from remote hosts
- Approach: Referral Super Peer (RSP)

Internet Port Blocking

Referral Super Peer

RSP is a "normal" Gnutella Super Peer
Abides by Gnutella protocol
Bootstraps into Super Peer Mesh with standard GWebCache mechanisms

Induces clients which connect to the RSP to probe for port blocking as part of their natural overlay formation process

Infrastructure High-Level

RSP is Innocuous!

Does not disrupt or degrade overlay
RSP and Measurement SP do not serve any content (no legality question)
RSP only redirects clients (not harmful)
Measurement SP is a real SP, once connected, clients receive service
In fact, long-lived, high-bandwidth Super Peers help Gnutella network

Infrastructure High-Level

↗Tie system into BGP database

Maintain per-IP per-CIDR state:

∧ Tie system to a SQL database

 Bias initial search toward contentious ports: P2P, SMTP, VPN, VoIP, etc.

Full Methodology

A Map of Internet Port Blocking

Devil in the details...

- Consider a busy referral for port p to client c residing in CIDR b
- Observe TCP SYN from *c* for *p*:
 - \neg *p* is not blocked on path from *b*
 - 7 b is neutral to applications using p
- No TCP SYN from c for p implies either:
 - $\neg p$ is blocked on path from b
 - ↗ c ignored referral

Probabilistic Inference

Empirical prior probability

For 99.5% probability that *i* non-responsive referrals indicates *b* blocks *p*:

$$P(n(p,b)=0/H(p,b,i)=0) = 0.995$$

Solution (see paper for formal derivation):

 $ni = log_{0.9}(0.005) \approx 50$

Must send and not observe responses for \sim 50 referrals to clients in *b* for port *p* to conclude that *p* is blocked on the path from *b*

Why Gnutella?

Internet Port Blocking

Measurement Bias

- Unbiased measurements from non-trivial portion of Internet (~31k prefixes ≈15% of Internet)
- Cannot measure networks that disallow Gnutella content filtering
- RSP listens on non-default port to avoid Gnutella port blocking
- Networks we don't measure could block more, fewer or different ports than we find

Efficacy of Methodology

Collected data for two months: October to December 2006
 ~31k unique BGP prefixes
 ~1M TCP connections
 ~72k unique Gnutella clients
 ~150k referrals sent

Size of Network

First question: what is the rate of new unique clients and BGP prefixes?

Rate of New Clients

R. Beverly, S. Bauer, A. Berger

System Performance

Second question: how well does the system allow us to make inferences?

R. Beverly, S. Bauer, A. Berger

Initial Results

Given our observations, which ports are more likely to be blocked relative to others?

Control Port

Gnutella Blocking

4/11/2007

HTTP Blocking

MS-SQL Blocking

Email Blocking

Future Analysis

- Determine relationship between blocking and type of prefix (business, .edu, ISP, etc)
- Determine geographical distribution of blocking
- Use AS topology to make inferences on where filtering is employed
- Evolution of blocking over time

Future Work

- Continue to collect measurements, increase our degree of confidence
- TCP Traceroutes:
 - Port-specific traceroutes to determine ingress filtering properties
 - Traceroutes allow us to determine where blocking occurs, filtering asymmetry, etc.
- Second methodology in progress employing HTTP using techniques outlined in this work

Research Summary

- Novel use of P2P overlay for measurement
- First measurements of Internet port blocking
- Initial results suggest promising avenue for systematic large-scale measurement

Thanks! Questions?