Two days in The Life of The DNS Anycast Root Servers

Ziqian Liu Beijing Jiaotong Univeristy

Bradley Huffaker, Marina Fomenkov Nevil Brownlee, and kc claffy CAIDA

PAM2007

Outline

- DNS root servers
- DNS anycast in root servers
- Data
- Traffic difference in anycast instances
- Anycast coverage
- Conclusion

DNS Root Servers

• Tree-structured distributed database

- Root servers provide authoritative referrals to name servers for gTDL and ccTLD domains.
- Only 13 root servers world wide [A-M].root-servers.net

DNS Anycast in Root Servers

- What is anycast
 - Anycast group
 - A set of instances that are run by the same organization and use the same IP address – the service address – but are physically different nodes.
 - e.g., k.root-servers.net RIPE 17 instances 194.0.14.129
 - For a DNS root servers, anycast provides a service where by clients send requests to the service address and the network delivers that request to at least one, preferably the closest, instance in the root server's anycast group.

DNS Anycast in Root Servers (2)

- How to deploy
 - Every instance in the anycast group announces reachability for the same prefix – service supernet – that covers the service address by BGP.
 - e.g k.root-servers.net 193.0.14.0/24
 - So, multiple AS paths are advertising the same prefix.
 - Different BGP routing policies:
 - Local instance
 - Limit the catchment area by using no-export community
 - Global instance
 - Globally visible
 - Use AS-prepending to decrease the likelihood of their selection over a local instance

DNS Anycast in Root Servers (3)

- C, F, I, J, K and M roots (6/13) have deployed anycast.
 - Over 120 root instances all togther (www.root-servers.org)
- What's the benefit?
 - Allow the system to grow beyond the static 13 servers while avoiding a change to the existing protocol
 - Bring DNS service closer to the clients
 - Provide relatively reliable and stable service compared to a nondistributed structure.
 - Separate the server/network failure
 - Mitigate the impact of malicious traffic
 - Oct 2002 DDoS attack against 13 root servers
 - Feb 2007 DDoS attack against root servers and gTLD servers

http://dnsmon.ripe.net/

Data

- ISC/ OARC (DNS Operations and Analysis Research Center) /CAIDA have been conducting measurement at the DNS root servers
- Three anycast root servers:
 - C-root: 4 of 4 instances
 - F-root: 33 of 37 instances (40 up-to-date)
 - K-root: 16 of 17 instances
- Time
 - Tue Jan 10~Wed Jan 11, 2006, UTC,
 - 47.2 hour long (~2 days)
- Data format
 - Full record tcpdump traces
- Our Focus: IPv4 UDP DNS requests
- Available at http://imdc.datcat.org

Traffic difference – Diurnal pattern

<u>back</u>

Traffic difference – Traffic load

- Both plots have the same x-axis intance order instances within each group are arranged in an increasing request rate order
- Global instances are marked with *

General statistics – Clients vs. Requests

During the 2 days:

- 80% of the 2.5M clients sent <100 reqs to the three roots
- 15 clients sent > 10M reqs
- Top client sent > 30M reqs
 i.e. ~ 174reqs/sec !

Anycast coverage

- Geographic
 - Client location: map client IP address to Geo info by using NetAcuity database
 - Instance location: coordinates of the closest airport
 - Distance: great circle distance
- Topological:
 - Route Views BGP table on Jan 10, 2006 for ASN and prefix

Anycast coverage – geographic distr.

Client Continental distribution

Anycast coverage – geographic distr.

• DNS request continental distribution

Anycast coverage – geographic distr.(2)

• Distance distribution (instance \leftrightarrow client)

Anycast coverage – geographic distr.(3)

• Distance distribution (instance ↔ client)

Anycast coverage – geographic distr.(4)

• Distance distribution (instance ↔ client)

Anycast coverage – geographic distr.(5)

• Additional distance = distance from the client to the instance it requests – distance from the client to the closest instance

Anycast coverage – topological coverage

Topological scope: observed 19,237 ASes, RouteViews 21,883 ASes (~88%)

% = # seen by instance / # seen by all

Both plots have the same x-axis intance order – instances within each group are arranged in an increasing AS coverage percentage order

Anycast coverage – topological coverage (2)

- denic K-root local instance in Frankfurt, Germany
 - AS paths observed from RouteViews:
 - AS12956 belongs to Telefonica which has a large-scale coverage

Anycast coverage – topological coverage (3)

- tokyo K-root global instance in Tokyo, Japan
 - AS paths observed from RouteViews: 193.0.14.0/24 **4713 25152 25152 25152 25152 i"
 - The longest among all five K-root global instances !

Anycast coverage – topological coverage (4)

- lax1 F-root local instance in LA, U.S.
 - AS paths observed from RouteViews:
 - 192.5.5.0/24 ^w7660 2516 27318 3557 i" ^w7500 2497 27318 3557 i" ^w2497 27318 3557 i"

Both AS7660 and AS2516 are in Japan!

QO

Anycast coverage – instance affinity

- Anycast improves stability by shortening AS paths
- Anycast increases chance of inconsistency among instances and of clients' transparent shifting to different instances.
- Given DNS traffic is dominated by UDP, route flapping is unimportant
- But if DNS uses stateful transaction(TCP, fragmented UDP)...[Barber,NANOG32]
- Recent studies [Lorenzo] [Boothe, APNIC19] [Karrenberg, NANOG34] suggests the impact of routing switches on the query performance is rather minimal

Anycast coverage – instance affinity (2)

- 2 F-root global instances together saw 99.8% of total clients who switched F-root instances
- 5 K-root global instances together saw 86% of total clients who switched K-root instances
- Focusing on the clients who switched the most instances:

 - 3 K-root clients are from Uruguay

All from South America, no C or K root instance there!

- 27 F-root clients all from UK and they never requested lcy1 - the F-root local instance in London, instead they switch between ams1, lga1, pao1 and sfo2

Conclusion

- Current method for limiting the catchment areas of local instances appears to be generally successful (though exceptions do exist due to peculiar routing configuration)
- A significant number of clients would benefit if routing configurations of their local DNS root instances were optimized to route them to the closet instances
- Instance selection by BGP is highly stable
 - In 2-day period, <2% of both C and F-root clients and < 5% of K-root clients experienced an instance change.

Questions?