

Detectability of Traffic Anomalies in Two Adjacent Networks

Augustin Soule, Haakon Ringberg, Fernando Silveira, Jennifer Rexford, Christophe Diot

Anomaly detection in large networks

- Anomaly detection is complex for large network
- Network-wide analysis [Lakhina 04] is promising
- Validated against multiple networks at different time
 - Abilene 03, Geant 04, Sprint Europe 03
- Features impacting the anomaly detection are unknown yet

Compare the anomaly observed between two networks

Using entropy for anomaly detection

- Hypothesis : the distribution
 changes during an anomaly
 - Entropy is a measure of the dispersion of the distribution
 1.Minimum if the distribution is concentrated
 2.Maximum if the distribution is spread
 - Four features
 - 1.Source IP distribution
 - 2.Destination IP distribution
 - 3.Source Port distribution
 - 4. Destination port distribution

- Kalman filter method [Soule 05]
- Method Overview
 1.Use a model to predict the traffic
 2.Innovation = Prediction error
- High threshold avoid false positive

Collected dataset

- Abilene and Geant monitoring
- Collected three month of data
 1.BGP
 2.IS-IS
 3.NetFlow
- Isolate twenty consecutive days of complete measurement

	Sampling	Temporal aggregation	Anonymization
Abilene	1/100	5 min	11 bits
Geant	1/1000	15 min	0 bits

 Connected through two peering links

Abilene and Geant

•Use routing information to isolate 1.Traffic from Abilene to Geant 2.Traffic from Geant to Abilene

•Detect anomalies inside each dataset using the same threshold parameter, but different datareduction parametes

Anomalies detected

- Compare the anomalies sent versus the anomalies observed
 1.Expected for G2A and A
 2.Surprising for G and A2G
- Amount of traffic ?
- Sampling ?
- Anonymization ?
- Threshold ?
- Method ?
- Model ?

- Examples of anomalies detected in a network but undetected in the other.
 - 1. Impact of Sampling & Method
 - 2. Impact of customer's Traffic Mix
 - 3. Impact of anonymization

Example 1 : attack over Port 22

Sampling affects the perception of anomaly The effect depends on the type of anomaly

Example 2 : Alpha Flow

Destination IP entropy

- Large file transfer between two hosts
- Observed in Geant
- Undetectable in Abilene

• In this Abilene the traffic is already concentrated by Web traffic

• The anomaly detectability is impacted by traffic

Example 3 : Scan over an IP subnet

- Attacker doing a subnet scan
- One source host
- Multiple destination hosts
 1.Concentration of source IP
 2.Dispersion of destination IP
- But we observe concentration in the Destination IP entropy
- Anonymization can :
 1.Help to detect anomalies
 2.Impact the anomaly identification

Summary

- First synchronized observation of two networks for anomaly detection
- Identification of various features impacting anomaly detection
 - 1. Sampling
 - 2. Traffic mix
 - 3. Anonymization
- Two anomalies are impacted differently by each features

• What impacts detectability ?

Thanks for listening !

